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INDEPENDENT-STRESS METHOD

FOR ANALYSIS OF NONLINEAR ANTIPLANE STRAIN

UDC 539.3V. D. Bondar’

The stress field in a cylindrical body under antiplane strains is studied using the nonlinear theory of
elasticity in actual variables under assumptions of the absence of body forces and weak nonlinearity of
the elastic potential. The stresses are determined by solving the nonlinear boundary-value problem for
two independent stresses in polar coordinates of the physical and stress planes. Analytical solutions
of the nonlinear problems are obtained. The effect of potential nonlinearity is studied. It is shown
that the nonlinear problem can be solved using the harmonic-equation solution corresponding to the
linear potential.

Key words: displacement, strain, stress, potential, nonlinearity, analytical solution, stress plane,
boundary-value problem.

1. We consider nonlinear antiplane strain of a cylindrical elastic body. In the actual variables x1, x2, and
x3 (x1 = x and x2 = y are the transverse coordinates and x3 = z is the longitudinal coordinate), the transverse
displacements vanish and the longitudinal displacement does not depend on the z coordinate: ux = uy = 0 and
uz = w(x, y) [1]. In this case, the body behaves like an incompressible body. The invariants Ek of the Almansi
strains Akl are nonpositive and can be expressed in terms of the linear invariant E1. For an isotropic body, the
elastic potential U = U(E1) is also a function of the linear invariant.

By virtue of the strain-compatibility equations

2E11 = −(2E31)2, 2E22 = −(2E32)2, 2E33 = 0, 2E12 = −2E312E32,
∂E32

∂x
=
∂E31

∂y

and the inverted Murnaghan law [2] 2Ekl = −(Pkl + qδkl)/U ′ (q is the pressure, δkl is the Kronecker symbol, and
U ′ = dU/dE1), the Cauchy stresses Pkl are related to the pressure and independent stresses Pzx and Pzy by the
nonlinear dependences (here and below, numerical subscripts are replaced by literal subscripts)

Pxx = −q + P 2
zx/U

′, Pyy = −q + P 2
zy/U

′, Pzz = −q, Pxy = PzxPzy/U
′, (1)

and the quantities q, Pzx, and Pzy (independent of the longitudinal coordinate) are determined from the equations
of equilibrium (in the absence of body forces) and differential stress-compatibility equation [3].

It is assumed that the derivative of the potential in relations (1) is expressed in terms of stresses. Eliminating
the strain invariant from the relations 2E1 = −(P 2

zx + P 2
zy)/U ′2 and U ′ = N(2E1), we obtain the expression in the

implicit form

U ′ = N(−R2/U ′2), R2 = P 2
zx + P 2

zy. (2)

Integrating two equilibrium equations ∂P1k/∂xk = 0 and ∂P2k/∂xk = 0 transformed with the use of the
third equation, we express pressure in terms of the elastic potential

q = h− U, h = const. (3)
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The constant h is determined by the potential and end load and is equal to the average value of the potential in
the cross section S of the body if the axial stress resultant vanishes:

h =
1
S

∫
S

U dS. (4)

Independent stresses are determined from the nonlinear boundary-value problem for the differential stress-
compatibility equation and equilibrium equation with the force conditions at the cross-sectional contour L of the
body:

∂

∂x

Pzy
U ′
− ∂

∂y

Pzx
U ′

= 0,
∂Pzx
∂x

+
∂Pzy
∂y

= 0, (5)

Pzx = gnnx − gtny, Pzy = gnny + gtnxL on L.

Here nx and ny are the components of the external normal to the cross section, U ′ is the solution of Eq. (2), and
gn and gt are the stresses determined via the tangential pt, normal pn, and binormal pb contour loads from the
equations given in [3]:

pt = gngt/U
′, pn = U − h+ g2

n/U
′, pb = gn (R2 = g2

n + g2
t ). (6)

We consider the Rivlin–Saunders quadratic elastic potential U generalizing the Mooney linear potential U0

U(E1) = aE2
1 − 2bE1, U0(E1) = −2bE1 (a > 0, b > 0, E1 < 0), (7)

which adequately describes large elastic strains of rubber-like materials [1]. The potential and its derivative can be
expressed in terms of stresses. In this case, these quantities are related and dependence (2) is the cubic equation

U = (U ′2 − 4b2)/(4a), U ′3 + 2bU ′2 + aR2 = 0. (8)

We write Eqs. (5) in an expanded form

2aPzxPzy
(∂Pzx
∂x
− ∂Pzy

∂y

)
+ (U ′3 − 2aP 2

zx)
∂Pzy
∂x
− (U ′3 − 2aP 2

zy)
∂Pzx
∂y

= 0,

∂Pzx
∂x

+
∂Pzy
∂y

= 0
(9)

and put them into correspondence to the second-order characteristic matrix Dkl with the following components and
determinant [4]:

Dxx = 2aPzxPzyvx − (U ′3 − 2aP 2
zy)vy, Dyy = vy,

Dxy = (U ′3 − 2aP 2
zx)vx − 2aPzxPzyvy, Dyx = vx, (10)

D = detDkl = DxxDyy −DxyDyx = −U ′3(v2
x + v2

y) + 2a(Pzxvx + Pzyvy)2.

The cubic equation in (8) has one real root (U ′1) and two complex-conjugate roots (U ′2, U ′3) [5]. By virtue of the
properties of the roots, the real root is negative:

aR2 = −U ′1U ′2U ′3 = −U ′1|U ′2|2, U ′1 < 0.

Hence, determinant (10) corresponding to the real root is positive: D > 0. Therefore, the characteristic equation
D = 0 has no real roots [4]. Thus, the Rivlin–Saunders quadratic potential (7) corresponds to the elliptic system (5),
for which the boundary-value problem is well-posed.

We now study the weak nonlinearity of potential (7) for which the coefficient of the quadratic term is small
compared to that of the linear term: a/(2b)� 1. It follows that the elastic coefficient is small too: m = a/(8b3)� 1.
Using the linear (in terms of m) approximation of the derivative U ′ = U ′0+mU ′1, we determine U ′ and then express U
with allowance for Eqs. (8):

U ′0 = −2b, U ′1 = −2bR2, U ′ = −2b(1 +mR2), U = R2(2 +mR2)/(8b). (11)

In this approximation, potentials (11) remain nonlinear in terms of stresses and system (9) preserves the elliptic
type.
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It follows from (5) and (6) that the relation R2 = g2
n + g2

t = p2
b + g2

t holds at the cross-sectional contour.
With allowance for this relation and the values of potentials (11), system (6) can be transformed. In the approxi-
mation considered, its first and third equations determine the boundary stresses gt and gn and the second equation
determines the load constraint:

gt = −(2bpt/p3
b)[p

2
b +m(4b2p2

t + p4
b)], gn = pb,

(p4
b + 4b2p2

t )[2p
2
b +m(3p4

b + 28b2p2
t − 8bp2

b(pn + h))] = 4p4
b(p

2
b + 2b(pn + h)).

(12)

Thus, nonlinear antiplane strain occurs in the body if the load elements and elastic coefficients are related.
2. In the relations obtained above, we change the Cartesian coordinates x, y, and z to the cylindrical

coordinates r, v, and z: x = r cos v, y = r sin v, and z = z. In this case, the relation between the components of the
normal and stresses in new variables is given by

nx = nr cos v − nv sin v, ny = nr sin v + nv cos v, nz = nz,

Pxx = Prr cos2 v + Pvv sin2 v − Prv sin 2v, Pyy = Prr sin2 v + Pvv cos2 v + Prv sin 2v,

Pzz = Pzz, Pzx = Pzr cos v − Pzv sin v, Pzy = Pzr sin v + Pzv cos v,
(13)

Pxy = (Prr − Pvv) sin v cos v + Prv cos 2v, R2 = P 2
zx + P 2

zy = P 2
zr + P 2

zv.

In accordance with (1) and (13), the cylindrical components of the stresses are expressed in terms of the quantities q,
Pzr, and Pzv:

Prr = −q + P 2
zr/U

′, Pvv = −q + P 2
zv/U

′, Pzz = −q, Prv = PzrPzv/U
′. (14)

Here q, U , and U ′ are determined by formulas (3) and (11) and the independent stresses Pzr and Pzv are found
from the boundary-value problem

U ′
(∂(rPzv)

∂r
− ∂Pzr

∂v

)
− rPzv

∂U ′

∂r
+ Pzr

∂U ′

∂v
= 0,

∂(rPzr)
∂r

+
∂Pzv
∂v

= 0,

Pzr = gnnr − gtnv, Pzv = gnnv + gtnr on L.
(15)

In the case where the stresses depend on one polar coordinate, Eqs. (15) admit simple analytical solutions.
Let the stresses be functions of the polar radius. The equations become

U ′
d(rPzv)
dr

− rPzv
dU ′

dr
= 0,

d(rPzr)
dr

= 0, U ′ = −2b(1 +m(P 2
zr + P 2

zv)).

Integrating these equations, we obtain the relations

rPzr = A, mBP 2
zv − rPzv +B(r2 +mA2)/r2 = 0, A = const, B = const,

which, with allowance for the condition m� 1, yield two solutions with free parameters A and B:

Pzr =
A

r
, Pzv =

r

mB
− B

r

(
1 +m

A2 +B2

r2

)
; (16)

Pzr =
A

r
, Pzv =

B

r

(
1 +m

A2 +B2

r2

)
. (17)

If the stresses depend only on the polar angle, Eqs. (15) become

U ′
(
Pzv −

dPzr
dv

)
− Pzr

dU ′

dv
= 0, Pzr +

dPzv
dv

= 0, U ′ = −2b(1 +m(P 2
zr + P 2

zv)).

This system reduces to the equations

Pzr = −dPzv
dv

,
(d2Pzv
dv2

+ Pzv

)[
1 +mP 2

zv −m
(dPzv
dv

)2]
= 0.

Integrating these equations, we obtain the following solutions, which depend on the parameters T , E, and f :

Pzv = T cos v + E sin v, Pzr = T sin v − E cos v, T = const, E = const; (18)

Pzv = sinh (f ± v)/
√
m, Pzr = ∓ cosh (f ± v)/

√
m, f = const. (19)
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Solutions (16) and (19) are valid only for the quadratic elastic potential. As m→ 0, the potential becomes
linear and the corresponding solutions increase unlimitedly and, hence, become meaningless. Thus, some of the
solutions of the nonlinear system (15) do not have linear analogs. We use the solutions obtained to solve some
particular boundary-value problems and determine the corresponding pressure, dependent stresses, and load in the
approximation considered.

Let the cross section of the body be the exterior of a circle of radius r0 and the coordinate origin be located at
the circle center. In this case, the components of the normal are nr = −1 and nv = 0, and the boundary conditions
in (15) have the form

Pzr = −gn, Pzv = −gt for r = r0. (20)

We use solution (17):

Pzr =
A

r
, Pzv =

B

r

(
1 +m

A2 +B2

r2

)
, R2 =

A2 +B2

r2

(
1 +m

2B2

r2

)
. (21)

For this solution, potentials (11) are functions of the polar radius:

U =
A2 +B2

4br2

(
1 +m

A2 + 5B2

2r2

)
, U ′ = U ′0

(
1 +m

A2 +B2

r2

)
. (22)

The constant h in (4) is determined for the exterior of the circle by calculating the limit of the mean value of
potential (22) in an annular ring that encloses the hole as the ring expands unlimitedly. The calculations show that
this constant vanishes and pressure (3) differs from the elastic potential only in sign:

h = lim
r∗→∞

1
r2
∗ − r2

0

r2
∗∫

r2
0

A2 +B2

4br2

(
1 +m

A2 + 5B2

2r2

)
dr2 = 0,

q = −A
2 +B2

4br2

(
1 +m

A2 + 5B2

2r2

)
.

(23)

Like the independent stresses and pressure (23), the dependent stresses (14) are functions of the radius:

Prr =
B2 −A2

4br2
+m

5(A2 +B2)2

8br4
, Pvv =

A2 −B2

4br2
+m

(A2 +B2)2

8br4
,

Pzz =
A2 +B2

4br2

(
1 +m

A2 + 5B2

2r2

)
, Prv = − AB

2br2
.

Stresses (21) vanish at infinity: P∞zr = P∞zv = 0, and the contour stresses (20) become constant:

gn = −A
r0
, gt = −B

r0

(
1 +m

A2 +B2

r2
0

)
for r = r0. (24)

It follows from (6) and (24) and the expression for potentials (22) that the loads also take constant values

pt = − AB
2br2

0

, pn =
B2 −A2

4br2
0

+m
5(A2 +B2)2

8br4
0

, pb = −A
r0
, (25)

which satisfy constraints (12).
The normal stress PLvv at the site orthogonal to the contour and its value P 0L

vv for the linear (m = 0) potential
are given by

PLvv =
A2 −B2

4br2
0

+m
(A2 +B2)2

8br4
0

, P 0L
vv =

A2 −B2

4br2
0

. (26)

It follows from (26) that, for load (25), the contour of the hole is extended for A2 > B2 and compressed for A2 < B2;
taking into account potential nonlinearity increases extension and decreases compression.

In the exterior of the circle r = r0, solution (18)

Pzr = T sin v − E cos v, Pzv = T cos v + E sin v, R2 = T 2 + E2 = const (27)

yields other stresses and loads. For stresses (27), potentials (11) are constants:

U ′ = U ′0[1 +m(T 2 + E2)], U = (T 2 + E2)[2 +m(T 2 + E2)]/(8b).
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In accordance with (4), the constant h is equal to the potential: h = U , which implies that pressure (3) vanishes:
q = 0. Hence, the dependent stresses (14) along with stresses (27) in the exterior of the hole are functions of the
angle:

Prr = − (T sin v − E cos v)2

2b(1 +m(T 2 + E2))
, Pvv = − (T cos v + E sin v)2

2b(1 +m(T 2 + E2))
,

Pzz = 0, Prv =
(E cos v − T sin v)(T cos v + E sin v)

2b(1 +m(T 2 + E2))
.

At infinity where the polar angle is indeterminate, stresses (27) are also indeterminate, whereas at the hole
contour, they determine the contour stresses (20) in the form

gn = −T sin v + E cos v, gt = −T cos v − E sin v.

The components of the contour load (6) are functions of the angle:

pt =
(E cos v − T sin v)(T cos v + E sin v)

2b(1 +m(T 2 + E2))
, pn = − (E cos v − T sin v)2

2b(1 +m(T 2 + E2))
,

pb = E cos v − T sin v,

which agree with the load constraints (12).
At the sites orthogonal to the contour, the normal stresses PLvv and P 0L

vv (for the quadratic and linear
potentials, respectively) are given by

PLvv = − (T cos v + E sin v)2

2b(1 +m(E2 + T 2))
, P 0L

vv = − (T cos v + E sin v)2

2b
.

It follows that, for the load determined above, the hole contour is compressed and taking into account potential
nonlinearity decreases compression.

3. Another method of studying problem (5) is based on using stress potentials, namely, displacement and
stress function. The first of these potentials has a mechanical meaning. The first equation in system (5) is satisfied
if the stresses (normalized to U ′) are expressed in terms of the axial displacement w(x, y):

Pzx
U ′

= −∂w
∂x

,
Pzy
U ′

= −∂w
∂y

. (28)

The second equation is satisfied if the stresses are expressed in terms of the stress function t(x, y):

Pzx =
∂t

∂y
, Pzy = − ∂t

∂x
. (29)

Eliminating the stresses from (28) and (29), we obtain the nonlinear system of equations for the functions w and t:

∂w

∂x
= − 1

U ′
∂t

∂y
,

∂w

∂y
=

1
U ′

∂t

∂x
, U ′ = U ′(R2), R2 =

( ∂t
∂x

)2

+
( ∂t
∂y

)2

. (30)

Differentiating system (30), one can eliminate one potential and obtain a second-order differential equation for the
other potential. Expressing the derivative of the elastic potential in terms of the strain invariant U ′(E1) and taking
into account the expression for the invariant [3] 2E1 = −|∇w|2, we obtain the equation for the displacement:[

U ′ − U ′′
(∂w
∂x

)2]∂2w

∂x2
− 2U ′′

∂w

∂x

∂w

∂y

∂2w

∂x∂y
+
[
U ′ − U ′′

(∂w
∂y

)2]∂2w

∂y2
= 0. (31)

In particular, for the linear elastic potential (7), the derivatives of the potential are constant: U ′0 = −2b and U ′′0 = 0,
and Eq. (31) for the displacement (denoted by w0) becomes the Laplace equation

∂2w0

∂x2
+
∂2w0

∂y2
= 0. (32)

Equations (30) can be written in the form of a linear system for the same functions if the independent
variables are chosen appropriately. The equations are nonlinear due to the quantity U ′, which depends on the
variable R =

√
P 2
zx + P 2

zy. Therefore, we pass from the Cartesian coordinates x and y of the physical plane to
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the polar coordinates R and V of the stress plane (Pzx, Pzy): Pzx = R cosV and Pzy = R sinV . To this end, we
consider the expression

dt+ iU ′ dw = −i(Pzx − iPzy)(dx+ i dy) = −iRe−iV dz (z = x+ iy),

in which Pzx and Pzy are determined by formulas (28) and (29). Assuming that z, t, and w are functions of R and
V , with allowance for R 6= 0, we obtain

dz = (ieiV /R)(dt+ iU ′ dw); (33)

∂z

∂R
=
ieiV

R

( ∂t
∂R

+ iU ′
∂w

∂R

)
,

∂z

∂V
=
ieiV

R

( ∂t
∂V

+ iU ′
∂w

∂V

)
. (34)

Elimination of the function z(R, V ) from Eqs. (34) by equating the partial derivatives ∂2z/∂R ∂V = ∂2z/∂V ∂R

yields the relation

∂t

∂R
+ iU ′

∂w

∂R
=

i

R

( ∂t
∂V

+ iU ′
∂w

∂V

)
+
∂U ′

∂R

∂w

∂V
.

Separating the real and imaginary parts, we obtain the linear system of equations

∂t

∂V
= RU ′

∂w

∂R
,

∂t

∂R
= R

d

dR

(U ′
R

)∂w
∂V

. (35)

Eliminating the stress function from system (35), we obtain the equation for the axial displacement w(R, V )

∂

∂R

(
RU ′

∂w

∂R

)
−R d

dR

(U ′
R

)∂2w

∂V 2
= 0. (36)

For the linear elastic potential, this relation becomes

R0
∂

∂R0

(
R0

∂w0

∂R0

)
+
∂2w0

∂V 2
= 0. (37)

Hereinafter, the subscript 0 denotes quantities corresponding to the linear elastic potential.
The solution of Eq. (36) w = w(R, V ) with the coordinate-transformation formulas R = R(x, y) and

V = V (x, y), which follow from Eq. (33), determine the displacement and stresses in the physical plane:

w(x, y) = w(R(x, y), V (x, y)),

Pzx(x, y) = R(x, y) cosV (x, y), Pzy(x, y) = R(x, y) sinV (x, y).

To establish a relation between the coordinates in (34), we replace the stress-function gradients by the
displacement gradients using formulas (35). As a result, we obtain

F =
∂z

∂R
= eiV

(
i
d

dR

(U ′
R

)∂w
∂V
− U ′

R

∂w

∂R

)
, G =

∂z

∂V
=
U ′

R
eiV
(
iR

∂w

∂R
− ∂w

∂V

)
. (38)

Integration of these equations according to [6] yields

z =
∫
F (R, V ) dR+G(R, V ) dV . (39)

Since the functions F and G satisfy the condition ∂F/∂V = ∂G/∂R, the integrand in (39) is the total differential.
Hence, for each solution of Eq. (36), the integral in (39) is independent of the integration path; separating the real
and imaginary parts in equality (39), we obtain the transformation x = x(R, V ) and y = y(R, V ).

By virtue of (38), the determinant of the coordinate transformation is expressed in terms of the displacement
and elastic potential:

∂(x, y)
∂(R, V )

=
∂(x, y)
∂(z, z̄)

∂(z, z̄)
∂(R, V )

= −U
′2

R

(∂w
∂R

)2

+
U ′

R

d

dR

(U ′
R

)(∂w
∂V

)2

.

In the approximation linear in m, the potential U ′ from (11) satisfies the equality

U ′

R

d

dR

(U ′
R

)
= −4b2

R3
(1 +mR2)(1−mR2) ≈ −4b2

R3
,

which implies that the determinant is finite and nonzero (except for singular points at which ∂w/∂R = ∂w/∂V = 0
or R = 0):
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∂(x, y)
∂(R, V )

= − 1
R3

[
R2(1 +mR2)

(∂w
∂R

)2

+
(∂w
∂V

)2]
6= 0,

It follows that there exists an inverse transformation R = R(x, y) and V = V (x, y).
For the elastic potential (11), the equation for displacement (36) is a linear second-order equation with

variable coefficients

R2(1 +mR2)
∂2w

∂R2
+R(1 + 3mR2)

∂w

∂R
+ (1−mR2)

∂2w

∂V 2
= 0. (40)

This equation admits simple analytical solutions. The displacement w = cRn cos (kV ), where c = const, is the
solution of Eq. (40) if the parameters k and n satisfy the relation n2−k2 +mR2(n2 +2n+k2) = 0. For an arbitrary
elastic coefficient m, this equation is satisfied if n2− k2 = 0 and n2 + 2n+ k2 = 0, i.e., for k = 1 and n = −1, which
yields the solution

w = (c/R) cosV = (c/R)(eiV + e−iV )/2. (41)

Solution (41) and the potential U ′ from (11) correspond to functions (38)

F = −2bc(e2iV +mR2)/R3, G = 2ibc(1 +mR2)e2iV /R2,

for which the integral in (39) is taken in a finite form and equality (39) gives a transcendental relation between the
coordinates of the physical and stress planes:

z = bc(−m lnR2 + (1 +mR2)e2iV /R2). (42)

The complex equality (42) determines the stresses in the physical plane R(x, y), V (x, y) implicitly. For weak physical
nonlinearity, one can obtain these relation in the explicit form. To this end, we linearize these functions with respect
to m

R(x, y) = R0(x, y) +mR1(x, y), V (x, y) = V 0(x, y) +mV 1(x, y). (43)

Substituting (43) into (42), we obtain

z =
bc

R02
e2iV 0

−mbc
[
lnR02 − e2iV 0

(
1− 2R1

R03
+

2iV 1

R02

)]
.

Comparing the coefficients of the like powers of the parameter on different sides of the equality, we obtain the
complex equations for the quantities R0, R1, V 0, and V 1:

z =
bc

R02
e2iV 0

, lnR02 − e2iV 0
[
1− 2

R02

(R1

R0
− iV 1

)]
= 0.

These equations imply

R02 = bc/r, tan 2V 0 = tan v = y/x, r =
√
x2 + y2,

(44)
R1

R0
=
bc

2r

(
1− x

r
ln
bc

r

)
, V 1 = − bcy

2r2
ln
bc

r
.

For the approximation considered, quantities (43) correspond to the Cartesian stress components

Pzx = (R0 +mR1) cos (V 0 +mV 1) = R0 cosV 0[1 +m(R1/R0 − V 1 tan V 0)],

Pzy = (R0 +mR1) sin (V 0 +mV 1) = R0 sinV 0[1 +m(R1/R0 + V 1 cot V 0)].

Taking into account the relations that follow from (44)

tan V 0 =

√
1 + tan 2 2V 0 − 1

tan 2V 0
=
r − x
y

, sinV 0 =
r − x√

2r(r − x)
, cosV 0 =

y√
2r(r − x)

,

we write Cartesian stresses in the form

Pzx =

√
bc

r
√

2
y√
r − x

[
1 +

mbc

2r

(
1 +

r − 2x
r

ln
bc

r

)]
,

(45)

Pzy =

√
bc

r
√

2
r − x√
r − x

[
1 +

mbc

2r

(
1− r + 2x

r
ln
bc

r

)]
.
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In the exterior of the circle of radius r0, stresses (45) vanish at infinity and have the variable values

PLzx =

√
bc
√
r0

cos
v

2

[
1 +

mbc

2r0

(
1 + (1− 2 cos v) ln

bc

r0

)]
,

(46)

PLzy =

√
bc
√
r0

sin
v

2

[
1 +

mbc

2r0

(
1− (1 + 2 cos v) ln

bc

r0

)]
at the boundary circumference L (x = r0 cos v and y = r0 sin v). Given these stresses, the boundary load is
calculated using formulas (20) and (6).

In this case, using (11) and (44), we obtain the elastic potential and its derivative

U =
R02

8b

(
1 + 2m

R1

R0

)
(2 +mR02) =

c

4r
+
mbc2

8r2

(
3− 2 cos v ln

bc

r

)
,

(47)
U ′ = −2b(1 +mR02) = −2b(1 +mbc/r).

It follows from Eq. (11) that U1 > 0 in the expression for the elastic potential U = U0 + mU1. To satisfy this
condition, one should impose the constraint on the constant c in expression (47):

3− 2 ln (bc/r0) > 0. (48)

The constant h in (4) calculated in the exterior of the circle by limiting passage vanishes:

h = lim
r∗→∞

1
π(r2
∗ − r2

0)

r∗∫
r0

r dr

2π∫
0

U(r, v) dv = lim
r∗→∞

c

2

( 1
r∗ + r0

+
3mb

2
ln r∗ − ln r0

r2
∗ − r2

0

)
= 0.

In accordance with (3), the pressure differs from the elastic potential only by sign:

q = −U = − c

4r

[
1 +

mbc

2r

(
3− 2 cos v ln

bc

r

)]
. (49)

The dependent components of stresses are determined by formulas (1) in accordance with (45), (47), and (49). At
the site orthogonal to the contour circumference, the normal stress is expressed in terms of Cartesian stresses in the
form PLvv = PLxx sin2 v− 2PLxy sin v cos v+PLyy cos2 v. From this relation, with allowance for stresses (1) expressed in
terms of the independent stresses and pressure, we obtain

PLvv = −qL + (PLzx sin v − PLzy cos v)2/U ′L.

For the approximation linear in m, formulas (46)–(49) yield the relations

qL = − c

4r0

[
1 +

mbc

2r0

(
3− 2 cos v ln

bc

r0

)]
,

1
U ′L

= − 1
2b

(
1−m bc

r0

)
,

(PLzx sin v − PLzy cos v)2 = bc
1− cos v

2r0

[
1 +

mbc

r0

(
1 + ln

bc

r0

)]
,

according to which the extensions of the hole contour for linear and quadratic elastic potentials have the form

P 0L
vv =

c cos v
4r0

, PLvv =
c cos v

4r0
+
mbc2

8r2
0

(
3− 2 ln

bc

r0

)
.

It follows that, in the case considered, one part of the hole contour is extended and the other is compressed; taking
into account potential nonlinearity under the natural condition (48) increases extension and decreases compression.

4. The solution of Eq. (36) in the stress plane that corresponds to the quadratic elastic potential and satisfies
the boundary conditions in the physical plane can be found using the solution of the harmonic equation (32), which
corresponds to the linear potential.

For the transformation of the independent variable

J0 =
∫
dR0

R0
= lnR0,

∂

∂J0
= R0

∂

∂R0
,

Eq. (37) becomes the Laplace equation

∂2w0

∂J2
0

+
∂2w0

∂V 2
= 0. (50)
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The equation for displacements (36) can also be reduced to the Laplace equation by multiplying by RU ′/U ′20

and setting

J =
∫
U ′0
U ′

dR

R
,

∂

∂J
=
RU ′

U ′0

∂

∂R
,

R2U ′

U ′0

d

dR

U ′

RU ′0
= −1. (51)

As a result, we obtain

∂2w

∂J2
+
∂2w

∂V 2
= 0. (52)

The last equality in (51) is the equation for the elastic potential

2
U ′

RU ′0

d

dR

U ′

RU ′0
= − 2

R3
.

Integration of this equation yields U ′/U ′0 =
√

1 + eR2, e = const. For the condition U ′ = U ′0 to be satisfied for
m = 0 and the potential have the form (11) for weak nonlinearity, the constant should be e = 2m. In this case, the
potential and transformed coordinate in (51) become

U ′/U ′0 =
√

1 + 2mR2 ≈ 1 +mR2, J = ln (R/
√

1 +mR2 ).

Thus, for weak nonlinearity of the potential, the equation for the displacement in the stress plane can be transformed
to the harmonic equation (52).

Let the displacement

w = wL (53)

be specified on the cross-sectional contour L of the cylinder. First, we solve problem (32), (53) and find the
displacement in the physical plane for the linear potential w0 = w0(x, y). Then, using the relations between
the coordinates x = x(J0, V ) and y = y(J0, V ), we transform it to the solution of Eq. (50) in the stress-plane
variables w0 = w0(J0, V ). Since Eqs. (52) and (50) are similar, the solution w of Eq. (52), which corresponds to
the quadratic potential, can easily be obtained in the form w = w0(J, V ) by substituting J for J0 in the solution
w0 = w0(J0, V ). Finally, substituting the variables J = J(x, y) and V = V (x, y) into the resulting solution, we
obtain the displacement in the physical plane w(x, y) = w0(J(x, y), V (x, y)) and then, the corresponding stress field.

We now use the method considered above to solve the nonlinear boundary-value problem of the displacement
in the exterior of an ellipse. In the case of a linear elastic potential, it is convenient to solve the problem by using
conformal mapping.

Let the region S be the exterior of an ellipse with the center located at the coordinate origin and semiaxes k
and l (k > l). The conformal mapping of the exterior of the ellipse onto the exterior of the unit circle |ζ| = 1 is
given by z = p(ζ + n/ζ) and ζ = ρeiθ, where the parameters p = (k + l)/2 (0 < p < ∞) and n = (k − l)/(k + l)
(0 < n < 1) characterize the dimensions and shape of the ellipse, respectively. The ellipse becomes a circle for n = 0
and a cut for n = 1.

Let the boundary displacement have the form wL = c ln rL = cRe (ln zL), where c = c̄ = const. In the
complex variables z and z̄, the harmonic equation (32) takes the form ∂2w0/∂z ∂z̄ = 0 and has the general solution
w0 = Re (ϕ(z)), where ϕ(z) is an arbitrary function. The boundary condition is satisfied if ϕ(z) = c ln z. Hence,
the displacement has the form w0 = (c/2) ln (zz̄).

For the linear potential U ′0 = −2b, formulas for stresses (28) can be written in the complex form

P 0
zx − iP 0

zy = 2b
(∂w0

∂x
− i ∂w0

∂y

)
= 4b

∂w0

∂z
.

Since

P 0
zx − iP 0

zy = R0e−iV = eJ0−iV ,
∂w0

∂z
=

c

2z
,

this equality and its inversion have the form

eJ0−iV = 2bc/z, z = 2bce−J0+iV .

Substitution of the expressions for z and z̄ into w0(z, z̄) yields the solution of Eq. (50): w0(J0, V ) = c(ln(2bc)−J0);
replacement of the variable J0 in this solution by J = ln (R/

√
1 +mR2) gives the solution w(R, V ) of Eq. (36):
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w(R, V ) = w0(R, V ) = c ln (2bc
√

1 +mR2/R). (54)

Solution (54) and the potential U ′ from (11) correspond to functions (38) and transformation (39):

F (R, V ) = −2bc
R2

eiV , G(R, V ) =
2ibc
R

eiV , z =
2bc
R

eiV , z̄ =
2bc
R

e−iV .

Inverting the transformation, we obtain

R = 2bc/r = 2bc/
√
x2 + y2, tan V = tan v = y/x.

It follows that the Cartesian stress components in the physical plane have the form

Pzx = R cosV =
2bc
r

cos v =
2bcx
x2 + y2

, Pzy = R sinV =
2bc
r

sin v =
2bcy

x2 + y2
. (55)

Stresses (55) vanish at infinity and take variable values at the boundary ellipse.
The conformal mapping implies the coordinate transformation

x = p(ρ+ n/ρ) cos θ, y = p(ρ− n/ρ) sin θ. (56)

Eliminating ρ or θ from these formulas, we obtain

x2

p2(ρ+ n/ρ)2
+

y2

p2(ρ− n/ρ)2
= 1,

x2

4np2 cos2 θ
− y2

4np2 sin2 θ
= 1.

It follows from these relations that polar coordinates in the circle plane correspond to elliptic coordinates in the
ellipse plane, the lines ρ = const corresponding to ellipses and the lines θ = const to hyperbolas. At the boundary
ellipse (ρ = 1), stresses (55) are given by

PLzx =
2bc(1 + n) cos θ

p(1 + n2 + 2n cos 2θ)
, PLzy =

2bc(1− n) sin θ
p(1 + n2 + 2n cos 2θ)

. (57)

In the variables ρ and θ, potentials (11) are written as

U = (bc2/r2)(1 + 2mb2c2/r2), U ′ = −2b(1 + 4mb2c2/r2),

r2 = (p2/ρ2)(ρ4 + n2 + 2nρ2 cos 2θ).
(58)

The constant h determined by (4) can be calculated in the elliptic coordinates (56) as the limit of the mean value
of the elastic potential in an elliptic ring that encloses the hole as the ring expands unlimitedly. Using the tables of
integrals [7], we obtain

h = lim
ρ∗→∞

1
S∗

ρ∗∫
1

dρ

2π∫
0

U(ρ, θ)I(ρ, θ) dθ = −2bc2

p2
lim
ρ∗→∞

( ρ2
∗

ρ2
∗ − 1

ln ρ∗
ρ2
∗ + n

)
= 0,

where

S∗ = (πp2/ρ2
∗)(ρ

2
∗ − 1)(ρ2

∗ + n), I = (p2/ρ3)(ρ4 + n2 − 2nρ2 cos 2θ).

Therefore, expressions for pressure (3) in the region and on the boundary are written as

q = −U = −(bc2/r2)(1 + 2mb2c2/r2), r2 = (p2/ρ2)(ρ4 + n2 + 2nρ2 cos 2θ),
(59)

qL = (bc2/(p2f))(1 + 2mb2c2/(p2f)), f = 1 + n2 + 2n cos 2θ.

Formulas (55) and (57)–(59) determine the dependent stress components (1) and the contour load (6). Indeed, in
accordance with (56) and (58), the elastic potentials and components of the normal have the following values on
the contour:

UL =
bc2

fp2

(
1 +

2mb2c2

fp2

)
,

1
U ′L

= − 1
2b

(
1− 4mb2c2

fp2

)
,

nx = −dy
ds

= −1− n
√
g

cos θ, ny =
dx

ds
= −1 + n

√
g

sin θ, g = 1 + n2 − 2n cos 2θ.

Using these relations, with allowance for (5) and (57), we obtain the contour stresses gt and gn and the contour
load (6):
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gn = PLzxnx + PLzyny = −2bc(1− n2)/(fp
√
g ), gt = PLzynx − PLzxny = 4bcn sin 2θ/(fp

√
g ),

pt =
4n(1− n2)bc2

f2gp2

(
1− 4mb2c2

fp2

)
sin 2θ, pb = −2bc

1− n2

fp
√
g
,

pn =
bc2

fp2

[
1− 2(1− n2)2

fg
+

2mb2c2

fp2

(
1 +

4(1− n2)2

fg

)]
.

Extension of the hole contour is determined by the elliptic stress component PLθθ (normal stress at the
site orthogonal to the elliptic boundary). Representing this component in terms of Cartesian components for
transformation of coordinates (56) and expressing the Cartesian stress components in terms of independent stresses
and pressure according to (1), we obtain

PLθθ = −qL + [PLzx(1 + n) sin θ − PLzy(1− n) cos θ]2/(gU ′L),

g = 1 + n2 − 2n cos 2θ, 1/U ′L = −(1− 4mb2c2/(p2f))/(2b).

Substitution of stress (57) and pressure (59) into this equality yields

PLθθ = P 0L
θθ +mP 1L

θθ , P 0L
θθ =

bc2

p2f

(
1− 8n2

fg
sin2 2θ

)
, P 1L

θθ =
2b3c4

p4f2

(
1 +

16n2

fg
sin2 2θ

)
.

In the range of variation of the parameter n, the quantities f and g satisfy the inequalities

f > (1− n)2 > 0, g > (1− n)2 > 0, fg > 0 for 0 < n < 1.

Using the relation fg = (1− n2)2 + 4n2 sin2 2θ, we write P 0L
θθ in the form

P 0L
θθ =

bc2

p2f

(1− n2)2 − 4n2 sin2 2θ
(1− n2)2 + 4n2 sin2 2θ

.

It follows that, for the linear potential, the character of extension of the hole contour strongly depends on its
shape:

P 0L
θθ =

bc2

p2
> 0 for n = 0, P 0L

θθ = − bc2

4p2 cos2 θ
< 0 for n = 1.

Therefore, by virtue of continuity of the stress, the contours of slightly extended (nearly circular) holes are extended,
whereas the contours of strongly extended (close to a cut) holes are compressed. The additional stress associated
with potential nonlinearity is positive: P 1L

θθ > 0. Consequently, in this case as in the cases considered above, taking
into account potential nonlinearity increases extension and decreases compression.

If the contour L with the equations x = x(s) and y = y(s) and the normal defined by nx = y′(s) and
ny = −x′(s) (s is the arc length of L; the prime denotes the derivative with respect to s) is subjected to the
admissible load pt(s), pn(s), and pb(s), relations (12), (5), and (11) determine the stresses Pzx(s) and Pzy(s)
and the potential U ′(s). In this case, Eqs. (28) [compatible by virtue of the first equality in (5)] determine the
displacement on L

wL = w0 +
1
2b

s∫
0

x′Pzx + y′Pzy
1 +m(P 2

zx + P 2
zy)

ds,

where w0 is a specified constant. Thus, the problem is reduced to the problem considered above.
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